>
Revealing the Hidden Spyware on Your Phone
Supreme Court unanimously upholds forced sale of TikTok from Chinese parent company
Bezos vs. Musk billionaire space race gets serious with launches on same day - but who will win?
Canada Says It Will Match US Tariffs If Trump Launches Trade War
$200 gadget brings global satellite texting to any smartphone
New Study Confirms that Cancer Cells Ferment Glutamine
eVTOL 'flying motorcycle' promises 40 minutes of flight endurance
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Physicists discover that 'impossible' particles could actually be real
Is the world ready for the transformational power of fusion?
Solar EV gets more slippery for production-intent Las Vegas debut
Hydrogen Finally Gets A Price Tag: S&P 500 New Energy Plays Soar Along With This Amazon Vendor
TSMC's New Arizona Fab! Apple Will Finally Make Advanced Chips In The U.S.
Study Reveals Key Alzheimer's Pathway - And Blocking It Reverses Symptoms in Mice
From the time we're conceived as just a single cell, to our wounds healing themselves in adulthood, cell division is a key part of how living organisms grow and survive. While we understand how this works on the broad scale, the nuances are still somewhat lost on us.
So the researchers on the new study set out to investigate the process further. To do so, they removed the "ingredients" from a cell and reconstructed them outside. But what they didn't expect was that this makeshift cell would undergo division like a normal cell.
First the team separated out actin, a protein that's key to the cellular division process. The actin proteins, which are long and rod-shaped, tended to clump together in parallel lines, forming a kind of almond-shaped droplet.
The real magic happened when the researchers added myosin, a motor protein that plays a part in muscle contraction. Surprisingly, the myosin moved towards the center of the actin droplets, then pinched them off from the middle, forming two separate "cells."