>
War Comes Closer: Senate OK's $40 Billion To Ukraine; NATO Pledges 'Open Ended' Support
Get Ready to Be Muzzled: The Coming War on So-Called Hate Speech
California Judge Strikes Down Law Forcing Companies To Appoint Women To Corporate Boards
Elon Musk's Twitter Detractors Were Subsidized With Millions In Taxpayer Dollars
World's First Vertiport For Flying Taxis Opens In UK
The World's First Flying Taxi Hub Takes Shape in the English Midlands
Elon Musk Gives Everyday Astronaut a SpaceX Starbase Tour
NEW StarLink Mesh Nodes | Starlink | Starlink 2022
Episode 5: What to do in a BOIL ADVISORY with your Berkey Filter
Harley-Davidson's Livewire announces second electric motorcycle
ColdQuanta Cold Atom Quantum Computer is Commercially Available
Styro Aircrete Garden Shed- Pouring and Packing the Walls
Watch: Autonomous Chinese Drone Swarm Flies Through Forest While Hunting For Humans
We test drove a solar powered car with 1000 miles range that never needs charging
Peak laser intensity demonstrations have occurred on specific Nd:glass-based lasers:
* the Vulcan PW in the UK at 1 × 10^21 W/cm2 (2004);
* the Ti:sapphirebased HERCULES laser at the University of Michigan, USA at 1 × 10^22 W/cm2 (2004)
* J-KAREN-P in Japan at 1 × 10^22 W/cm2 (2018)
* record intensity of 5.5 × 10^22 W/cm2 was demonstrated at the CoReLS laser (2019)
Even the highest-peak-power laser systems (10 PW and beyond) proposed or already in commissioning make no exception to this trend and largely predict intensities of only up to 10^23 W/cm2
(notably L4-ELI, EP-OPAL , SULF and SEL).
A fundamental physics or engineering limit is not clear; however, material challenges such as imperfect diffraction gratings, optics and gain materials reduce the overall laser focusability in time and space.
The steady ascent of Ti:sapphire, OPCPA and Nd:glass technologies upward in peak power has, with the construction of several ten to multi-tens of petawatt systems, nearly reached the ∼100 PW limit of metre-scale gold diffraction gratings.