>
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
LA To Institute Mass Layoffs Of City Workers In Wake Of $1 Billion Deficit
Canada Votes On New Government Monday After Shock Poll Reversal
DEVELOPING: Trump Says Those Who Operated Biden's Autopen "Should All Be In Jail"
Cramming More Components Onto Integrated Circuits
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
Engineers at the University of Wisconsin–Madison have now forged a new type of ultralight armor material described as a "nanofiber mat," which features a unique chemistry that enables it to outperform Kevlar and steel.
The basis for this new form of armor are tiny cylinders of carbon with the thickness of a single atom. Called carbon nanotubes, these have shown promise as next-generation materials for everything from transistor research, to treating vision loss, to bomb detection devices.
In adapting carbon nanotubes for use in armor materials, the authors of this new study took multi-walled versions of them and combined them with Kevlar nanofibers. The idea was to build on earlier research demonstrating the potential of these materials in absorbing impacts, to see if they couldn't be fashioned into an even more functional armor solution.
"Nano-fibrous materials are very attractive for protective applications because nanoscale fibers have outstanding strength, toughness, and stiffness compared to macroscale fibers," said Ramathasan Thevamaran, who led the research. "Carbon nanotube mats have shown the best energy absorption so far, and we wanted to see if we could further improve their performance."
To do so, the scientists tinkered with the chemistry until they landed on the winning recipe. They synthesized Kevlar nanofibers and incorporated just a small amount of them into "mats" made up of carbon nanotubes, with just the right ratio of both, which led to the production of hydrogen bonds between the fibers. The result of these bonds was a dramatic leap in performance.