>
The Hancock's (and others) pay tribute to Michael Badnarik
Must-See Video: Anne Heche Fights To Escape Body Bag After Suspicious Crash
Atlantic op-ed claims Catholic rosary has become 'an extremist symbol'
Whole Foods CEO Thinks Socialists Are Taking Over Schools and Corporations
3-wheeled EV commuter equals 230 MPGe, blends torque & safety
Starlink Wins FCC Approval For In-Motion Use On Airplanes And Cruise Ships
Raspberry Pi Foundation brings Wi-Fi to Pico microcontroller
Have You Changed Phones Yet?, + Q&A
Breakthrough Zero-Carbon Fertilizer Set to Take Root Across the World as 'Biochar'
Artificial Photosynthesis Can Produce More Food in the Dark Than With Sunshine
Researchers run a gas turbine on pure hydrogen in world first
Injectable hydrogel treats back pain from damaged discs in human trials
Going under anesthesia? Scientists reveal what happens inside your unconscious brain
Mayman Aerospace debuts flight-ready Speeder flying motorbike prototype
In a promising step towards eternal youth, scientists have reversed the ageing process in middle-aged and elderly mice using a cellular 'rejuvenation' technique.
The California-based experts have shown they can partially reset mice cells to 'more youthful states', using four molecules known as the Yamanaka transcription factors.
After injecting these molecules into mice of various ages, the animals' kidneys and skin showed promising signs of rejuvenation, while their skin cells had a greater ability to proliferate and were less likely to form permanent scars.
Researchers say their 'safe' treatment could one day help humans wind back their biological clock, lowering risks of cardiovascular disease and cancer.
According to the findings, a treatment period of seven to 10 months may be required to stave off the unwanted side effects of ageing.
'The technique is both safe and effective in mice,' said Juan Carlos Izpisua Belmonte, co-corresponding author and a professor at the Salk Institute, San Diego, California.
'We are elated that we can use this approach across the life span to slow down ageing in normal animals.
'In addition to tackling age-related diseases, this approach may provide the biomedical community with a new tool to restore tissue and organismal health by improving cell function and resilience in different disease situations, such as neurodegenerative diseases.'