>
Using Russell Brand as Pretext, UK Govt & US Media Launch Multi-Pronged War on Rumble
The Newspaper Revolution - #SolutionsWatch
Timcast IRL - Judge Orders Trump Organization SHUT DOWN, SHOCKING Corruption w/Carl Benjamin
AI Can Now Create An Image Of Your Thoughts & Home
China Makes Huge Chip Breakthrough – 7 Nanometers Without EUV Lithography Machines
Ingenious Snow-Proof Solar Panels Can Work in All Weather: 'Game-Changing Tech'
Tesla Breakthrough 3D Printing With Sand For Single Piece Casting of Complex Underbody
Dawn Of The AI Presidential Candidate: Meet The Chat2024 'Clones'
Students Set New EV Acceleration World Record: 0-62 MPH In Less Than A Second
Scientists Re-Engineer The Brain To Alter Human Addiction
Engineers' New Cement "could turn new buildings into giant batteries" and -
Using regolith simulants, their reactor produces iron, silicon, and aluminum through molten regolith electrolysis, in which an electrical current separates those elements from the oxygen to which they are bound. Oxygen for propulsion and life support is a byproduct.
Above – Molten regolith electrolysis extracts iron, then silicon, and finally aluminum by passing a current through the molten regolith. The rising oxygen bubbles in one of our reactors show metals and metalloids being separated from oxygen. Our reactor geometry, metal extraction approach, and materials selection will enable sustained lunar operations.
This process purifies silicon to more than 99.999%. This level of purity is required to make efficient solar cells. While typical silicon purification methods on Earth use large amounts of toxic and explosive chemicals, their process uses just sunlight and the silicon from their reactor.
The harsh lunar environment means lunar solar cells need cover glass. They would only last for days without glass. This technique uses only molten regolith electrolysis byproducts to make cover glass that enables lunar lifetimes exceeding a decade.