>
1000s Evacuated As Massive Wall Of Water Surges Through Ukraine After Major Dam 'Blown Up'
Journalists Are Asking Ukrainian Soldiers To Hide Their Nazi Patches, NYT Admits
Comey: Imagine A "Retribution Presidency" Where The President Ordered The...
El Salvador Unleashes "Volcano Energy" With 241 Megawatt Planned Bitcoin Mining Operation
Newly Developed Humanoid Robot Warns About AI Creating "Oppressive Society"
Scientists develop mega-thin solar cells that could be shockingly easy to produce:
High-tech pen paints healing gel right into wounds
EG4 18K after 1 Megawatt Hour! Is it worth the $$$?
Terminator-style Synthetic Covering for Robots Mimics Human Skin and Heals Itself
The Death of 2FA (2 Factor Authentication)? + Q&A
High-speed orbital data link drags space communications out of the '60s
WORLD'S FIRST 3D PRINTED CLAY HOUSES
Smaller, cheaper, safer: The next generation of nuclear power, explained
The exciting achievement came about after researchers were able to interfere with an enzyme typically found to be overactive in the brains of Alzheimer's patients.
The hyperactive enzyme, CDK5, was treated with an unnamed peptide, or string of amino acids.
Early tests conducted on mice revealed significant — and promising — results.
"This peptide has the ability to enter the brain and in a couple of different models, the peptide shows protective effects against loss of neurons and also appears to be able to rescue some of the behavior deficits," study author Li-Huei Tsai, director of MIT's Picower Institute for Learning and Memory, told The Post.
The hope, with further testing, is that this particular peptide might be a treatment for dementia — particularly dementia brought on by CDK5 overactivity.
The errant enzyme is triggered by a smaller protein called P35, which, in Alzheimer's patients, can become harmful when "cleaved" into a smaller protein known as P25 — which is also connected to Parkinson's disease.