>
Israel BURYING Burned Cars They Attacked On October 7!
FBI, CDC refused to investigate Chinese biolab in California...
J6: The Truth FINALLY Revealed
Anwar first to have Digital ID in Malaysia
China plans to mass produce humanoid robots in two years -
World's largest airship is unveiled:
Did He Lie? Lawmakers Request Investigation on Elon Musk's -
These $4,000 homes are keeping families in the Pine Ridge Native American Reservation...
How to Make Free Gas with Garbage | Free Gas Butane - Propane | Liberty BioGas
Gravity tests head-tracking, shoulder-mounted firearms on its jet suit
Incredible Fastest Wooden House Construction - Faster And Less Inexpensive Construction Solutions
Amazing Lego-Style HEMP BLOCKS Make Building a House Quick, Easy & Sustainable
Optimized Nuclear Thermal Rocket for 45 Days to Mars
New 10 Minute Treatment Restores Sense of Smell and Taste in Patients with COVID Parosmia
A nuclear fission fragment rocket engine (FFRE) that is exponentially more propellent efficient than rocket engines currently used to power today's space vehicles and could eventually achieve very high specific impulse (>100,000 sec) at high power density (>kW/kg). A new NASA NIAC (NASA Innovative Advanced Concepts) project is creating a buildable near term design for a nuclear fission fragment rocket. It would enable manned mission to Mars with 90 day travel times. The fission fragment system would give experience in a technology which could eventually enable interstellar rockets with speeds of 10% of the speed of light.
Current proposed designs for Fission Fragment Rocket Engines are prohibitively massive, have significant thermal constraints, or require implementing complex designs, such as dusty plasma levitation, which limits the near-term viability. Researchers propose to develop a small prototype low-density nuclear reactor core and convert the nuclear energy stored in a fissile material into a high velocity rocket exhaust and electrical power for spacecraft payloads.
The key improvements over previous concepts are:
1. Embed the fissile fuel particles in an ultra-low density aerogel matrix to achieve a critical mass assembly
2. Utilize recent breakthroughs in high field, high temperature superconducting magnets to constrain fission fragment trajectories between moderator elements to minimize reactor mass.