>
Radian Single Stage to Orbit Space Plane
Wednesday War Room LIVE: Trump Reveals New Information on Assassination Attempts:
DARPA's high-speed VTOL X-plane passes ground effect testing
Smart stitches generate electricity on movement for faster healing
Jeff Bezos's Blue Origin Could Have a Commercial Space Station Running by 2030
Toyota Just Invested $500 Million in Electric Air-Taxi Maker Joby
Cheap, powerful, high-density EV battery cells set for mass production
World's first 3D-printed hotel rises in the Texas desert
Venus Aerospace Unveils Potential Mach 6 Hypersonic Engine and Will Power a Drone in 2025
OpenAI As We Knew It Is Dead, Now It's A Loose Cannon In The Hands Of A Megalomaniac Technocrat
Geothermal Energy Could Outperform Nuclear Power
I Learned How to Fly This Electric Aircraft in a Week--and I Didn't Need a License
"I am Exposing the Whole Damn Thing!" (MIND BLOWING!!!!) | Randall Carlson
Israel develops method for hacking air-gapped computers - no computer is safe now
A new NASA NIAC (NASA Innovative Advanced Concepts) project is creating a buildable near term design for a nuclear fission fragment rocket. It would enable manned mission to Mars with 90 day travel times.
The fission fragment system would give experience in a technology which could eventually enable interstellar rockets with speeds of 10% of the speed of light.
A mature and advanced fission fragment rocket using hundreds of tons of fissile fuel and a 200 gigawatt reactor could have a design that could reach about 10% of light speed.
The proposed designs for Fission Fragment Rocket Engines are prohibitively massive, have significant thermal constraints, or require implementing complex designs, such as dusty plasma levitation, which limits the near-term viability. NASA NIAC researchers propose to develop a small prototype low-density nuclear reactor core and convert the nuclear energy stored in a fissile material into a high velocity rocket exhaust and electrical power for spacecraft payloads.