>
Self-Amplifying RNA Shots Are Coming: The Untold Danger
The global battle over microchips | DW Documentary
Israel BURYING Burned Cars They Attacked On October 7!
FBI, CDC refused to investigate Chinese biolab in California...
China plans to mass produce humanoid robots in two years -
World's largest airship is unveiled:
Did He Lie? Lawmakers Request Investigation on Elon Musk's -
These $4,000 homes are keeping families in the Pine Ridge Native American Reservation...
How to Make Free Gas with Garbage | Free Gas Butane - Propane | Liberty BioGas
Gravity tests head-tracking, shoulder-mounted firearms on its jet suit
Incredible Fastest Wooden House Construction - Faster And Less Inexpensive Construction Solutions
Amazing Lego-Style HEMP BLOCKS Make Building a House Quick, Easy & Sustainable
Optimized Nuclear Thermal Rocket for 45 Days to Mars
New 10 Minute Treatment Restores Sense of Smell and Taste in Patients with COVID Parosmia
A new NASA NIAC (NASA Innovative Advanced Concepts) project is creating a buildable near term design for a nuclear fission fragment rocket. It would enable manned mission to Mars with 90 day travel times.
The fission fragment system would give experience in a technology which could eventually enable interstellar rockets with speeds of 10% of the speed of light.
A mature and advanced fission fragment rocket using hundreds of tons of fissile fuel and a 200 gigawatt reactor could have a design that could reach about 10% of light speed.
The proposed designs for Fission Fragment Rocket Engines are prohibitively massive, have significant thermal constraints, or require implementing complex designs, such as dusty plasma levitation, which limits the near-term viability. NASA NIAC researchers propose to develop a small prototype low-density nuclear reactor core and convert the nuclear energy stored in a fissile material into a high velocity rocket exhaust and electrical power for spacecraft payloads.