>
Candace Owens: The Conspiracy Theorists Were Right about JFK + Israeli Ties to Assassination
Obama Judge Blocks DOGE From Social Security Records; Musk Team Deletes 'Vampires'
'Make Ireland Great Again' - Conor McGregor Announces Run For Irish Presidency
Billions of Humanoid Bots and Robotaxis Could Enable a Quadrillion Dollar Economy by the 2040s
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
How Big Tech Plans To Read Your Mind
First electric seaglider finally hits the water with real passengers
Construction, Power Timeline for xAI to Reach a 3 Million GPU Supercluster
Sea sponges inspire super strong material for more durable buildings
The most commonly known form of magnetism – the kind that sticks stuff to your fridge – is what's called ferromagnetism, which arises when the spins of all the electrons in a material point in the same direction. But there are other forms such as paramagnetism, a weaker version that occurs when the electron spins point in random directions.
In the new study, the ETH scientists discovered a strange new form of magnetism. The researchers were exploring the magnetic properties of moiré materials, experimental materials made by stacking two-dimensional sheets of molybdenum diselenide and tungsten disulfide. These materials have a lattice structure that can contain electrons.
To find out what type of magnetism these moiré materials possessed, the team first "poured" electrons into them by applying an electrical current and steadily increasing the voltage. Then, to measure its magnetism, they shone a laser at the material and measured how strongly that light was reflected for different polarizations, which can reveal whether the electron spins point in the same direction (indicating ferromagnetism) or random directions (for paramagnetism).
Initially the material exhibited paramagnetism, but as the team added more electrons to the lattice it showed a sudden and unexpected shift, becoming ferromagnetic. Intriguingly, this shift occurred exactly when the lattice filled up past one electron per lattice site, which ruled out the exchange interaction – the usual mechanism that drives ferromagnetism.
"That was striking evidence for a new type of magnetism that cannot be explained by the exchange interaction," said Ataç Imamo?lu, lead author of the study.