>
Revealing the Hidden Spyware on Your Phone
Supreme Court unanimously upholds forced sale of TikTok from Chinese parent company
Bezos vs. Musk billionaire space race gets serious with launches on same day - but who will win?
Canada Says It Will Match US Tariffs If Trump Launches Trade War
$200 gadget brings global satellite texting to any smartphone
New Study Confirms that Cancer Cells Ferment Glutamine
eVTOL 'flying motorcycle' promises 40 minutes of flight endurance
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Physicists discover that 'impossible' particles could actually be real
Is the world ready for the transformational power of fusion?
Solar EV gets more slippery for production-intent Las Vegas debut
Hydrogen Finally Gets A Price Tag: S&P 500 New Energy Plays Soar Along With This Amazon Vendor
TSMC's New Arizona Fab! Apple Will Finally Make Advanced Chips In The U.S.
Study Reveals Key Alzheimer's Pathway - And Blocking It Reverses Symptoms in Mice
Spinal injuries interrupt the flow of electrical signals from the brain to the lower parts of the body, reducing mobility and in severe cases leading to total paralysis. Spinal stimulators are devices that can be surgically implanted into a patient's spine to bypass the injury site and restore some mobility. Unfortunately, these are often bulky, require surgery, and have precision issues.
For the new study, the Johns Hopkins team developed a much smaller device that's flexible and stretchable. It's placed into a different site than other stimulators – the ventrolateral epidural surface, which is not only close to motor neurons for better precision, but it can just be injected into place with a regular syringe, no surgery required. Tests in paralyzed mice proved promising.