>
Tucker shares 'backroom' info about brawl between him and Israel First crowd…
Why Isn't There a Cure for Alzheimer's Disease?
US Government Revokes 80,000 Visas
OpenAI CEO Sam Altman served legal papers during speech in dramatic on-stage ambush
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...

Medical professionals often refer to the 'Golden Hour' as the crucial period straight after a traumatic injury. While it's not strictly one hour, the general principle is that the faster medical intervention occurs, the better the patient's chances of survival.
That's obviously a big problem for emergencies that occur a long way from a hospital. But a new study from Harvard's Wyss Institute suggests a new way to extend that so-called Golden Hour, by placing a patient in "biostasis" to slow down their metabolism and prevent permanent organ damage.
The researchers used an algorithm called NeMoCad, which analyzes the structures of compounds to figure out which ones might have a desired effect – in this case, inducing torpor, a kind of hibernation-like state that some animals enter naturally. This process singled out a compound called donepezil, or DNP, which is currently FDA-approved as a treatment for Alzheimer's.
"Interestingly, clinical overdoses of DNP in patients suffering from Alzheimer's disease have been associated with drowsiness and a reduced heart rate – symptoms that are torpor-like," said María Plaza Oliver, first author of the study. "However, this is the first study, to our knowledge, that focuses on leveraging those effects as the main clinical response, and not as side effects."
The team tested out DNP's possible torpor-inducing effects in tadpoles. And sure enough, it reduced three biological factors that suggest torpor: oxygen consumption, heart rate and swimming motion.
Unfortunately, when injected as free particles, the drug accumulated in tissues across the tadpoles' bodies and caused some toxicity. To prevent that, the team encapsulated the DNP inside lipid nanoparticles, and found that the drug accumulated in the brain tissue, reducing toxicity while still inducing the torpor-like state.