>
Biden Sends $1 Billion to Africa While Americans in WNC Freeze
Eastern European Countries Loading Up on Gold as Chaos Hedge
UnitedHealthcare CEO Assassination: Bullet Casings Inscribed With "Deny, Defend, Depose"
Court Filing: Bitcoin Advocate Roger Ver Argues Government Overreach in Tax Case, Seeks Dismissal
20 Ways to Purify Water Off The Grid
Air Taxi Company Buys 40 Cargo Drones; 600-Mile Range
Texas proposes digital currency linked to gold and silver
Cancer Remission Achieved with Low-Cost Drug | Media Blackout
Homemade CNC Machine! (6 months of work in 8 minutes)
NASA Underwater Robots to Search for Life on Moons With Oceans Like Europa
New SpaceX Starship Block 2 Design Flying in January and Block 3 One Year Later
Fast-charging lithium-sulfur battery for eVTOLs nears production
Back in 2019, we heard how a team co-led by Northwestern University's Prof. John A. Rogers developed a prototype device known as an "epidermal VR" patch. It took the form of a thin, soft, flexible and slightly-tacky elastomer membrane containing an array of wirelessly-powered, wirelessly-controlled, disc-shaped electronic actuators.
When the 15-by-15-cm (5.9-inch) patch was temporarily adhered to the skin, the actuators could be individually triggered to vibrate, replicating the sensation of being lightly touched in a given pattern. Rogers and colleagues have now taken that concept a step further.