>
Three Bob Ross Paintings Sold for $600,000 at Auction in Fundraiser for Public Television
New Gel Regrows Dental Enamel–Which Humans Cannot Do–and Could Revolutionize Tooth Care
Delta Airlines Treats Teens to Free 'Dream Flights' Inspiring Many to Become Pilots and Engi
"Every reserve currency has COLLAPSED, the US dollar is next" We better buckle up!
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

How much data are we talking here? "This new molecule could lead to new technologies that could store about three terabytes of data per square centimeter," said Professor Nicholas Chilton from the Australian National University (ANU). "That's equivalent to around 40,000 CD copies of The Dark Side of the Moon album squeezed into a hard drive the size of a postage stamp, or around half a million TikTok videos."
To achieve this sort of data density, the team of chemists from ANU and the University of Manchester had to go beyond existing magnetic storage tech. Current drives magnetize small regions of a material to retain memory and that's fine – but the researchers are looking at single-molecule magnets (SMM) which can store data individually to unlock much greater density than ever before.
Imagine a tiny magnet that stores a 1 or 0, similar to computer memory. For these molecular magnets to be useful, they need to reliably hold their magnetic direction (their "memory") across a range of temperatures. Today's single-molecule magnets, especially those made with the metallic element Dysprosium, lose their magnetic memory below about 80 Kelvin (which is -193 °C or -315 °F).
The researchers took it upon themselves to get these magnets to work at higher temperatures than that. They've achieved this by designing and synthesizing a new Dysprosium molecule called 1-Dy. This new molecule maintains its magnetic memory (termed hysteresis) up to 100 Kelvin (-173 °C or -279 °F), which "could be feasible in huge data centers, such as those used by Google," according to co-lead author Professor David Mills.
The new molecule is said to be more stable too, meaning it can withstand a much higher energy barrier to magnetic reversal than previous SMM, and that it would take more energy to flip its magnetic state by accident. The team published its findings in Nature earlier this week.
1-Dy maintains its magnetic memory at higher temperatures than previous magnets because of its unique molecular structure. Since the rare earth element is located between two nitrogen atoms in a straight line, held in place with an alkene bonded to Dysprosium, the molecule's magnetic performance is significantly better than other SMM.