>
If you're worried about Social Security and Medicare running out, thank a Democrat – Lara Logan
There is a highly orchestrated, dark campaign afoot to take down Pete Hegseth…
Cramming More Components Onto Integrated Circuits
"I Want A Death That The World Will Hear"?--?Journalist Assassinated By Israel For Telling
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Cartilage, which is found in joints, as well as between vertebrae in the spine, is not as easy to repair as other types of connective tissue, and its degeneration can leave patients in a lot of pain. A new bio-material, made up of a mixture of a polymer called polycaprolactone and silica, could help with the ability to replace lost cartilage.
It's similar to real cartilage in that it's strong, flexible and durable, giving it the same load-bearing and shock-absorbing properties. Furthermore, it's possible to produce the material in a biodegradable ink form, allowing researchers to 3D print structures. The material also has self-healing properties, allowing two sections to firmly reattach after being pulled apart.
The researchers believe that the material could be useful in numerous situations. For example, it could be used to create implants for patients with damaged intervertebral discs, or to 3D print tiny biodegradable scaffolds that replicate lost cartilage in the knee.