>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Cartilage, which is found in joints, as well as between vertebrae in the spine, is not as easy to repair as other types of connective tissue, and its degeneration can leave patients in a lot of pain. A new bio-material, made up of a mixture of a polymer called polycaprolactone and silica, could help with the ability to replace lost cartilage.
It's similar to real cartilage in that it's strong, flexible and durable, giving it the same load-bearing and shock-absorbing properties. Furthermore, it's possible to produce the material in a biodegradable ink form, allowing researchers to 3D print structures. The material also has self-healing properties, allowing two sections to firmly reattach after being pulled apart.
The researchers believe that the material could be useful in numerous situations. For example, it could be used to create implants for patients with damaged intervertebral discs, or to 3D print tiny biodegradable scaffolds that replicate lost cartilage in the knee.