>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The biggest challenge in scaling up a quantum computer is figuring out how to entangle enough quantum bits (qubits) to perform calculations, but a team of engineers in the US say they might finally have a solution.
Quantum computers are set to revolutionise how we process data in the future, because they're not limited to the 1s and 0s of binary code that today's computers rely on. That binary code is holding us back, because if you can only use a combination of 1s and 0s, there's a finite amount of data that can be processed, no matter how fast you go.
Instead, quantum computers use qubits, which can essentially take the state of 0, 1, or a 'superposition' of the two. So rather than having bits that can only be 1 or 0 at any given moment, qubits can be anything and everything.
As Todd Jaquith explains for Futurism:
"Quantum computers exploit three very unusual features that operate at the quantum scale - that electrons can be both particles and waves, that objects can be in many places at once, and that they can maintain an instantaneous connection even when separated by vast distances (a property called 'entanglement')."