>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Scientists working at the University of Cambridge have used a form of liquid light to create a semiconductor switch that is so small that it not only blurs the distinction between light and electricity, but could also enable the development of much faster and smaller electronic components well into the future.
With the limits of Moore's Law looming closer day by day, the demand for faster, smaller electronics ever increasing, and microelectronics reaching the point where quantum effects are seriously challenging the continued use of electrons as a transporter of data, researchers the world over are exploring ways to solve these problems.
With contemporary methods used to convert between electrical signals and optical ones considered largely inefficient, University of Cambridge researchers believe that it would be better simply to cut out the middleman and mix the two together. In a quest to achieve this, the researchers created a switch using a new state of matter known as a Polariton Bose-Einstein condensate to combine electric and optical signals, while consuming infinitesimally small quantities of energy in the process.