>
Will Payment Of 50 Percent Of Food Stamp Benefits Be Enough To Keep Widespread Rioting...
Interview 1985 - Revolution or Civil War on The Jimmy Dore Show
Steak 'n Shake Launches First-Ever Strategic Bitcoin Reserve
Mike Rowe appears to be receiving flak for daring to explore the potential dangers of vaccines...
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
Russia flies strategic cruise missile propelled by a nuclear engine
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install
Engineers Discovered the Spectacular Secret to Making 17x Stronger Cement

To Norman Yao, these inert crystals are the tip of the iceberg.
If crystals have an atomic structure that repeats in space, like the carbon lattice of a diamond, why can't crystals also have a structure that repeats in time? That is, a time crystal?
In a paper published online last week in the journal Physical Review Letters, the UC Berkeley assistant professor of physics describes exactly how to make and measure the properties of such a crystal, and even predicts what the various phases surrounding the time crystal should be — akin to the liquid and gas phases of ice.
This is not mere speculation. Two groups followed Yao's blueprint and have already created the first-ever time crystals. The groups at the University of Maryland and Harvard University reported their successes, using two totally different setups, in papers posted online last year, and have submitted the results for publication. Yao is a co-author on both papers.