>
How a 27-Year-Old Codebreaker Busted the Myth of Bitcoin's Anonymity
Old World Order is COLLAPSING: The Death of Europe and the Rise of China
Energy Secretary Expects Fusion to Power the World in 8-15 Years
South Koreans Feel Betrayed Over Immigration Raid, Now Comes the Blowback
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
The technology could revolutionize the development of surface lasers, making them more compact and energy-efficient for communications and computing applications. The new BIC lasers could also be developed as high-power lasers for industrial and defense applications.
"Lasers are ubiquitous in the present day world, from simple everyday laser pointers to complex laser interferometers used to detect gravitational waves. Our current research will impact many areas of laser applications," said Ashok Kodigala, an electrical engineering Ph.D. student at UC San Diego and first author of the study.
"Because they are unconventional, BIC lasers offer unique and unprecedented properties that haven't yet been realized with existing laser technologies," said Boubacar Kanté, electrical engineering professor at the UC San Diego Jacobs School of Engineering who led the research.
BIC lasers can be readily tuned to emit beams of different wavelengths, a useful feature for medical lasers made to precisely target cancer cells without damaging normal tissue.