>
JUST IN: New Details About the Six Suspended Secret Service Agents Connected to Trump...
Prince Andrew Now Cleared for International Travel as Trump's FBI Closes His Investigation...
Moderna's COVID-19 Vaccine Spikevax Receives Full FDA Approval for Children...
Trump Throws Support Behind RINO and Warmonger Lindsey Graham's Reelection Bid
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
A new study reveals that nanotechnology can be used to rapidly rewarm cryogenically treated samples without damaging delicate frozen tissues, which may someday help make organ cryopreservation a reality. More than 60% of the hearts and lungs donated for transplantation must be discarded annually, because these tissues cannot be kept on ice for longer than four hours. According to recent estimates, if only half of unused organs were successfully transplanted, transplant waiting lists could be eliminated within two years. Long-term preservation methods like vitrification - which involves super-cooling biological samples to a glassy state - could establish tissue storage banks and reduce transplant rejection rates, greatly facilitating the process to find matching donors when needed.
* we have been able to vitrify organs since the 1980s but have not been able to safely thaw them
* we need to evenly and rapidly heat cryopreserved organs
* microwaving leaves hotspots that damage thawed organs
* magnetic nanoparticles enable the necessary rapid heating (100 degrees per minute) but without hotspots