>
How a 27-Year-Old Codebreaker Busted the Myth of Bitcoin's Anonymity
Old World Order is COLLAPSING: The Death of Europe and the Rise of China
Energy Secretary Expects Fusion to Power the World in 8-15 Years
South Koreans Feel Betrayed Over Immigration Raid, Now Comes the Blowback
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
An effective direct interfacing material is essential to communication between these devices and neural tissue, which includes nerves and the brain.
In recent years, a conjugated polymer known as PEDOT — widely used in applications such as energy conversion and storage, organic light-emitting diodes, electrochemical transistors, and sensing — has been investigated for its potential to serve as this interface.
In some cases, however, the low mechanical stability and relatively limited adhesion of conjugated polymers like PEDOT — short for poly (3,4-ethylene dioxythiophene) — on solid substrates can limit the lifetime and performance of these devices. Mechanical failure might also leave behind undesirable residue in the tissue.
A research team led by the University of Delaware's David Martin has reported the development of an electrografting approach to significantly enhance PEDOT adhesion on solid substrates.