>
China Will Close the Semiconductor Gap After EUV Lithography Breakthrough
The Five Big Lies of Vaccinology
Large global study analyzing data from 192 countries has sparked intense debate by suggesting...
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

In a world-leading study researchers at Macquarie University have proven a method for multiplying laser power using diamond, demonstrating that a laser similar to the Star Wars 'superlaser' may no longer remain in science fiction.
The research, published in Laser and Photonics Reviews demonstrates a concept – reminiscent of the Star Wars Death Star sci-fi laser – where the power of multiple laser beams is transferred into a single intense output beam that can be directed to the intended target.
This new laser development has real-world and high-stakes applications where high power lasers are seen as a key tool in areas such as defence.
"Researchers are developing high power lasers to combat threats to security from the increased proliferation of low-cost drones and missile technology. High power lasers are also needed in space applications including powering space vehicles and tackling the growing space junk problem that threatens satellites," said co-author Associate Professor Rich Mildren.