>
China Will Close the Semiconductor Gap After EUV Lithography Breakthrough
The Five Big Lies of Vaccinology
Large global study analyzing data from 192 countries has sparked intense debate by suggesting...
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

Magnetic materials could now be developed faster than ever before, thanks to computer modelling techniques used to build two new types of magnets, atom-by-atom.
By using software to predict atom energy, stability, and other interactions inside a computer model, the researchers whittled down 236,115 potentially promising compounds to a shortlist of just 14 very quickly.
That's a huge improvement over the traditional trial-and-error methods currently used by scientists, according to the team from Duke University, and could lead to the rapid discovery of new magnets for all kinds of purposes, from medical devices to car engines.
"Predicting magnets is a heck of a job and their discovery is very rare," says one of the researchers, Stefano Curtarolo from the Centre for Materials Genomics at Duke. "Even with our screening process, it took years of work to synthesise our predictions."