>
Ranchers in Washington are challenging the state over a fundamental constitutional question...
President Milei launched an account in English but it was suspended by X a few hours later.
The Trump Doctrine: "They Have It. We Want It. We Take It."
Event 201 Pandemic Exercise: Segment 4, Communications Discussion and Epilogue Video
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging

Still without a publicized name, Rolls-Royce's design is a pressurized water reactor in a close-coupled four-loop configuration. A team of about 150 people have been working on it for around two years. The first months were taken with major design decisions including the use of a light-water as coolant and moderator and to select the close-coupled arrangement of steam generators as opposed to integrating them into the reactor vessel, or adopting a more spread out design similar to today's large reactors. At 450 MWe the output is higher than other innovative designs, and actually outside the usual range considered to define the SMR market of up to 300 MWe.
They are trying to make a design that is cost competitive with natural gas.
Rolls-Royce believes its SMR design will:
• Provide 450 MW, depending on the configuration, that's the equivalent of up to 160 onshore wind turbines.
• Supply power to the grid in a timely manner at lower cost to the taxpayer and consumer, generating electricity that is at least as cheap (per MW) as power generated by today's large scale reactors – potentially even cheaper when SMRs go into volume production.
• Represent the lowest risk by using proven technology and best value by using a high degree of commercial or standardized off-the-shelf components.