>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In this greatly enlarged cross-section of an experimental chip, the bands of black and white reveal alternating layers of hafnium diselenide â an ultrathin semiconductor material â and the hafnium dioxide insulator. The cross-section matches an overlaid color schematic on the right. (Image credit: Michal Mleczko)
The new materials can also be shrunk to functional circuits just three atoms thick and they require less energy than silicon circuits. Although still experimental, the researchers said the materials could be a step toward the kinds of thinner, more energy-efficient chips demanded by devices of the future.
Science Advances â HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-Îș oxides
Silicon's strengths
Silicon has several qualities that have led it to become the bedrock of electronics, Pop explained. One is that it is blessed with a very good "native" insulator, silicon dioxide or, in plain English, silicon rust. Exposing silicon to oxygen during manufacturing gives chip-makers an easy way to isolate their circuitry. Other semiconductors do not "rust" into good insulators when exposed to oxygen, so they must be layered with additional insulators, a step that introduces engineering challenges. Both of the diselenides the Stanford group tested formed this elusive, yet high-quality insulating rust layer when exposed to oxygen.