>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
•Chemical cost analyzed for 40 rechargeable couples developed over the past 60 years
•Aqueous sulfur/sodium/air system identified with ultralow chemical cost of ∼US$1/kWh
•Air-breathing flow battery architecture demonstrated at laboratory scale
•Techno-economic analysis shows installed cost is comparable with PHS and CAES
Above – Curves for the present air-breathing aqueous sulfur flow battery approach using Na and Li chemistry are shown in green and gray, respectively. The chemical costs for Na and Li are shown as dashed lines. Curves of constant power cost show that the power stack dominates the system cost at short storage durations, whereas at long duration the cost asymptotically approaches the energy cost due to chemical constituents plus storage tank and related costs. 5 M concentrations of both Na and S are assumed, with cycling of the sulfur over the speciation range S22− to S42− corresponding to 25% of theoretical capacity.