>
Gold surges past $3,700 as the Fed prepares for interest rate cuts...
HATE SPEECH laws are anti-American
Glenn Diesen warns Europe and NATO it's time to ADJUST TO REALITY
FBI's 'Armed Queers' Probe Just The Start
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Finding ways to disarm these defenses is a key component of antibiotics, and now researchers at Harvard Medical School have identified a structural weakness that seems to be built into a range of bacterial species, potentially paving the way for a new class of widely-effective antibacterial drugs.
The new study builds on previous research into a protein named RodA. While the protein itself has long been known, in 2016 the Harvard team was the first to discover that it builds the protective cell walls of bacteria out of sugar molecules and amino acids. Since RodA belongs to the SEDS family of proteins, which is common to almost all bacteria, the team realized it was the perfect target for a far-reaching antibiotic. And on closer examination of RodA, the researchers spotted a vulnerable looking cavity on the outer surface of the protein.
"What makes us excited is that this protein has a fairly discrete pocket that looks like it could be easily and effectively targeted with a drug that binds to it and interferes with the protein's ability to do its job," says David Rudner, co-senior author of the study.
To test whether this cavity was the Achilles' heel they were looking for, the scientists altered the structure of the protein in two species of bacteria, E. coli and Bacillus subtilis. These two were chosen because they're well understood and represent the two broad classes of disease-causing bacteria, gram-positive and gram-negative.