>
AI-Powered "Digital Workers" Deployed At Major Bank To Work Alongside Humans
New 'Mind Reading" AI Predicts What Humans Do Next
Dr. Bryan Ardis Says Food Producers Add 'Obesogens' to Food and Drugs to Make Us Fat
Health Ranger Report: Team AGES exposes Big Pharma's cancer scam and threats from AI
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Finding ways to disarm these defenses is a key component of antibiotics, and now researchers at Harvard Medical School have identified a structural weakness that seems to be built into a range of bacterial species, potentially paving the way for a new class of widely-effective antibacterial drugs.
The new study builds on previous research into a protein named RodA. While the protein itself has long been known, in 2016 the Harvard team was the first to discover that it builds the protective cell walls of bacteria out of sugar molecules and amino acids. Since RodA belongs to the SEDS family of proteins, which is common to almost all bacteria, the team realized it was the perfect target for a far-reaching antibiotic. And on closer examination of RodA, the researchers spotted a vulnerable looking cavity on the outer surface of the protein.
"What makes us excited is that this protein has a fairly discrete pocket that looks like it could be easily and effectively targeted with a drug that binds to it and interferes with the protein's ability to do its job," says David Rudner, co-senior author of the study.
To test whether this cavity was the Achilles' heel they were looking for, the scientists altered the structure of the protein in two species of bacteria, E. coli and Bacillus subtilis. These two were chosen because they're well understood and represent the two broad classes of disease-causing bacteria, gram-positive and gram-negative.