>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Barredo and team report their use of precision optical-engineering methods to sort atoms into arbitrary 3D patterns.
Barredo et al. extend their previously reported method for 2D atom sorting to three dimensions. Their approach to disorder and sorting is different from Kumar and colleagues' method, but just as effective. They use a holographic technique whereby a laser beam is reflected off a spatial light modulator and then focused to form traps known as optical tweezers. In this way, they generate arrays of traps in arbitrary configurations that can be loaded with up to 72 cold rubidium atoms. To remove disorder and build the desired atomic configuration, the authors use a separate, movable optical tweezer to pluck atoms from 'wrong' traps and either move them to correct sites or discard them. This allows them to build qubit arrays in standard grid patterns, in topologies such as a Möbius strip, and even in the shape of the Eiffel Tower.