>
Silver up over $2.26... Today! $71.24 (and Gold close to $4500)
GARLAND FAVORITO: More and more fraud from the 2020 election in Fulton County, Georgia...
Rep. Matt Gaetz tells Tucker Carlson that agents of the Israeli govt tried to blackmail his...
Trump: We need Greenland for national security… you have Russian and Chinese ships all over...
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

Project one is developing a sampling drill for volatile-rich lunar regolith as part of NASA's Lunar Resource Prospector.
There is technology development required to reach TRL 6, as well as the range of tests the system was subjected to. These tests include drilling in volatile-rich lunar analog soil and sample delivery inside a lunar chamber.
Project two involves volatile extraction technology for large-scale mining operations. In a more conventional approach, feedstock is mined and transported to a processing plant. Here, an alternative design will be presented that combines the mining and extraction steps into one and eliminates the transport step. I will present several approaches, vacuum chamber test data, and lessons learned.