>
Father jumps overboard to save daughter after she fell from Disney Dream cruise ship
Terrifying new details emerge from Idaho shooting ambush after sniper-wielding gunman...
MSM Claims MAHA "Threatens To Set Women Back Decades"
Peter Thiel Warns: One-World Government A Greater Threat Than AI Or Climate Change
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
The U.S. military has been attempting to design futuristic, performance-enhancing exoskeletons for combat soldiers since the late 1990s, but the technology often interferes with the way humans move.
"The human-exoskeleton interface raises a number of potential issues. Most exoskeletons contain rigid elements that can restrict natural movement," according to a recent request for information solicitation posted on www.sibr.gov, a government website for the Small Business Innovation Research (SBIR) program, which is designed to encourage small business to engage in federal research and development.
"The objective of this effort is to demonstrate an interface that can safely join an exoskeleton (which is potentially rigid and/or heavy) to a human being (which is fleshy and load-limited) while simultaneously optimizing the mobility of and minimizing the injury to a dismounted soldier," it states.