>
AI Data Centers Build Their Own Power Plants Because the Grid Isn't Ready
Tucker Responds to the Text Message Scandals and What It Reveals About the Dark Desires of the Left
AI stock frenzy sparks bubble fears as valuations skyrocket
States embrace goldbacks amid dollar decline, offering antifragile currency against centralized...
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
As the shock-absorbing cartilage discs between our vertebrae degenerate due to aging, accidents or overuse, severe back pain can result. While some scientists have developed purely synthetic replacement discs, a recent test on goats indicates that bioengineered discs may be a better way to go.
Although the replacement of degraded intervertebral discs with synthetic ones does help alleviate pain, scientists at the University of Pennsylvania claim that the implants don't match the function or range-of-motion of real cartilage, plus some of them don't last very long. That's where the researchers' bioengineered discs may make a big difference.
Still in the animal-trial phase, the discs are made by first obtaining a lab animal's mesenchymal stem cells (cells that can form into cartilage) and then adding them to a scaffolding-like matrix made up of hydrogel and polymer, which is sandwiched between two polymer endplates. The stem cells proceed to propagate into that matrix, gradually replacing it with actual cartilage. What ultimately results is a disc composed of the animal's own cartilage, which can then be surgically substituted for one of their existing discs.
Previously, an earlier miniaturized version of the disc was implanted into the spinal column of live rats' tails, and was still successfully functioning after five weeks. Those discs were officially known as disc-like angle ply structures, or DAPS.