>
NATO and Ukraine to Hold Emergency Talks After Russian Hypersonic Missile Attack
Flood Of Chinese Goods Into North America Earns Mexico "Backdoor" Label
Make Army Futures Command Great Again
Berlin Teachers Sound Alarm Over Educational Crisis Caused By Multiculturalism
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
As the shock-absorbing cartilage discs between our vertebrae degenerate due to aging, accidents or overuse, severe back pain can result. While some scientists have developed purely synthetic replacement discs, a recent test on goats indicates that bioengineered discs may be a better way to go.
Although the replacement of degraded intervertebral discs with synthetic ones does help alleviate pain, scientists at the University of Pennsylvania claim that the implants don't match the function or range-of-motion of real cartilage, plus some of them don't last very long. That's where the researchers' bioengineered discs may make a big difference.
Still in the animal-trial phase, the discs are made by first obtaining a lab animal's mesenchymal stem cells (cells that can form into cartilage) and then adding them to a scaffolding-like matrix made up of hydrogel and polymer, which is sandwiched between two polymer endplates. The stem cells proceed to propagate into that matrix, gradually replacing it with actual cartilage. What ultimately results is a disc composed of the animal's own cartilage, which can then be surgically substituted for one of their existing discs.
Previously, an earlier miniaturized version of the disc was implanted into the spinal column of live rats' tails, and was still successfully functioning after five weeks. Those discs were officially known as disc-like angle ply structures, or DAPS.