>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
As the shock-absorbing cartilage discs between our vertebrae degenerate due to aging, accidents or overuse, severe back pain can result. While some scientists have developed purely synthetic replacement discs, a recent test on goats indicates that bioengineered discs may be a better way to go.
Although the replacement of degraded intervertebral discs with synthetic ones does help alleviate pain, scientists at the University of Pennsylvania claim that the implants don't match the function or range-of-motion of real cartilage, plus some of them don't last very long. That's where the researchers' bioengineered discs may make a big difference.
Still in the animal-trial phase, the discs are made by first obtaining a lab animal's mesenchymal stem cells (cells that can form into cartilage) and then adding them to a scaffolding-like matrix made up of hydrogel and polymer, which is sandwiched between two polymer endplates. The stem cells proceed to propagate into that matrix, gradually replacing it with actual cartilage. What ultimately results is a disc composed of the animal's own cartilage, which can then be surgically substituted for one of their existing discs.
Previously, an earlier miniaturized version of the disc was implanted into the spinal column of live rats' tails, and was still successfully functioning after five weeks. Those discs were officially known as disc-like angle ply structures, or DAPS.