>
We Americans Need to Dig Deep into Historical Perspective
A timeless clip of Michael Burry explaining how he used credit default swaps...
The next financial crisis won't start in a bank lobby. It's already brewing in the market
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

QCI's unique software platform harnesses the power of our quantum hardware. We are building a full stack of flexible software to run novel and complex algorithms, exploiting the full potential of quantum computation.
Delivering Quantum as a Service.
QCI opened its New Haven development and testing facility for quantum computing.
The facility includes 6,000 square feet of state-of-the-art laboratories and in-house manufacturing. It will house more than 20 scientists and engineers.
Yale University researchers have demonstrated one of the key steps in building the architecture for modular quantum computers: the "teleportation" of a quantum gate between two qubits, on demand.
The key principle behind this new work is quantum teleportation, a unique feature of quantum mechanics that has previously been used to transmit unknown quantum states between two parties without physically sending the state itself. Using a theoretical protocol developed in the 1990s, Yale researchers experimentally demonstrated a quantum operation, or "gate," without relying on any direct interaction. Gates are necessary for quantum computation that relies on networks of separate quantum systems — an architecture that many researchers say can offset the errors that are inherent in quantum computing processors.