>
Why Geological Maps Are the Best Investment You've Never Heard Of
High School Student Discovers 1.5 Million Potential New Astronomical Objects...
UK Supreme Court says legal definition of 'woman' excludes trans women, in landmark ruling
Major Problem in Physics Could Be Fixed if The Whole Universe Was Spinning
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
IBM is partnering with State University of New York to develop an AI Hardware Center at SUNY Polytechnic Institute in Albany. New York will also provide a subsidy of $300 million.
The IBM Research AI Hardware Center will enable IBM and their partner ecosystem to achieve 1,000x AI performance efficiency improvement over the next decade. They will overcome current machine-learning limitations by using approximate computing with Digital AI Cores and in-memory computing with Analog AI Cores.
Approximate Computing with Digital AI Cores
The best hardware platforms for training deep neural networks (DNNs) has just moved from traditional single precision (32-bit) computations towards 16-bit precision. This is more energy efficient and uses less memory. IBM researchers have successfully trained DNNs using 8-bit floating point numbers (FP8) while fully maintaining the accuracy of deep learning models and datasets.