>
"TEST Her First!" - Do This BEFORE You Get Married | Charlie Kirk
AI, Inevitability, & Human Sovereignty
Researchers Found Unvaccinated Children Healthier Than Vaccinated, Didn't Publish Findings
The Five Most Likely Outcomes From The Russian Drone Incursion Into Poland
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
IBM is partnering with State University of New York to develop an AI Hardware Center at SUNY Polytechnic Institute in Albany. New York will also provide a subsidy of $300 million.
The IBM Research AI Hardware Center will enable IBM and their partner ecosystem to achieve 1,000x AI performance efficiency improvement over the next decade. They will overcome current machine-learning limitations by using approximate computing with Digital AI Cores and in-memory computing with Analog AI Cores.
Approximate Computing with Digital AI Cores
The best hardware platforms for training deep neural networks (DNNs) has just moved from traditional single precision (32-bit) computations towards 16-bit precision. This is more energy efficient and uses less memory. IBM researchers have successfully trained DNNs using 8-bit floating point numbers (FP8) while fully maintaining the accuracy of deep learning models and datasets.