>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Pablo Jarillo-Herrero is channeling some of his copious energy into a morning run, dodging startled pedestrians as he zips along, gradually disappearing into the distance. He'd doubtlessly be moving even faster if he weren't dressed in a sports coat, slacks and dress shoes, and confined to one of the many weirdly long corridors that crisscross the campus of the Massachusetts Institute of Technology. But what he lacks in gear and roadway he makes up for in determination, driven by the knowledge that a packed auditorium is waiting for him to take the podium.
Jarillo-Herrero has never been a slacker, but his activity has jumped several levels since his dramatic announcement in March 2018 that his lab at MIT had found superconductivity in twisted bilayer graphene — a one-atom-thick sheet of carbon crystal dropped on another one, and then rotated to leave the two layers slightly askew.
The discovery has been the biggest surprise to hit the solid-state physics field since the 2004 Nobel Prize–winning discovery that an intact sheet of carbon atoms — graphene — could be lifted off a block of graphite with a piece of Scotch tape. And it has ignited a frenzied race among condensed-matter physicists to explore, explain and extend the MIT results, which have since been duplicated in several labs.
The observation of superconductivity has created an unexpected playground for physicists. The practical goals are obvious: to illuminate a path to higher-temperature superconductivity, to inspire new types of devices that might revolutionize electronics, or perhaps even to hasten the arrival of quantum computers. But more subtly, and perhaps more important, the discovery has given scientists a relatively simple platform for exploring exotic quantum effects. "There's an almost frustrating abundance of riches for studying novel physics in the magic-angle platform," said Cory Dean, a physicist at Columbia University who was among the first to duplicate the research.