>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The new research reveals how gastrointestinal problems can be triggered by the same gene mutations associated with autism, and a striking mouse study has demonstrated how a fecal transplant from humans with autism can promote autism-like behaviors in the animals.
One of the more intriguing areas of microbiome research is the growing connection between gut bacteria and autism. Several recent, albeit small, studies have revealed behavioral and psychological symptoms of autism in children can be improved using fecal transplants from healthy subjects. Exactly how the microbiome could be influencing autism symptoms is still unclear but one new study, led by researchers from Caltech, has strengthened this intriguing gut-brain hypothesis.
The research began by taking microbiome samples from human subjects, both with and without autism, which were then transplanted into germ-free mice. The results were striking, with the animals receiving gut bacteria from human subjects with autism displaying hallmark autistic behaviors such as decreased social interactions and increased repetitive behaviors. The mice administered with gut bacteria from non-autistic human donors did not display these behavioral symptoms.