>
Dave Smith Reacts to Tesla Protests
Joe Rogan Reacts to Marie Le Pen Sentence
Joe Rogan Reacts to Coordinated Protests
This woman was a paid protester at a Hands Off Protest. She details what she had to do to get paid.
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
Energy efficiency – either for electric or ICE cars – is achieved by one of these three pillars: mass, aerodynamics or powertrain. Researchers from the Carnegie Mellon University will be able to tackle two of these pillar at once with a new soft magnetic material they have developed. It would be able to make electric motors up to three or four times lighter. With the same performance.
The technical name of these magnets is "metal amorphous nanocomposite materials". The magic, or else, the science on these soft magnets, is their ability not to heat up as much as common magnetic materials. That allows them to achieve higher RPMs when applied to electric motors.
"The faster you can switch the magnetic material, the faster you can spin the motor, the more power you get out of it," said Michael McHenry, a professor of materials science and engineering that is one of the leading scientists on this research.
"If I can spin the motor at higher and higher speeds, I get more and more power. That means I can use a smaller motor for the same job."
Electric cars have a big problem mass problem with their battery packs, something that could be solved with new battery technology to increase power density, such as the one developed by IMEC. But reducing weight on electric motors is also very welcome.
The main goal of the scientists seems to be developing motors for robots, but electric cars would also benefit from it. Professor McHenry's team is also working on new electric motors designs with an axial flux approach. Similar to the one from Magnax.