>
Daniel McAdams - 'What I Learned from Ron Paul'
Can Trump Find a Way Out of the Box He Is in?
BREAKING: BlackRock continues dumping hundreds of millions of dollars worth of Bitcoin $BTC
Neuroscience just proved:Dolphins have more brain than humans in the areas that process...
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Copper is an extremely interesting material due to its conductivity properties and for being highly malleable.
These very same properties hindered its success as a feasible option for 3D printing. However, that has changed.
The most common technique for 3D printing copper is Powder Bed Fusion. It uses electronic beams to melt material powders and "glue" the material. When the temperature drops, the material consolidates together.
The most popular processes of Powder Bed Fusion are known as Selective Laser Sintering (SLS), for plastics, and Selective Laser Melting (SLM), for metals.
Despite SLM being an excellent printing process for many metals, there was a particular challenge when it came to 3D printing with copper.
The conductivity properties of the material cause the heat of the electronic beams to be reflected instead of absorbed.
Another reoccurring problem was the fact that the printed part would crack when the temperature would drop too fast and/or too low.