>
2025-09-17 -- Ernest Hancock interviews James Corbett (Corbett Report) MP3&4
Whistleblower EXPOSES How Israel Brainwashes American Christians!
Joe Rogan listens to "How to destroy America"
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
IN THE BLACKNESS of space billions of miles from home, NASA's Voyager 2 marked a milestone of exploration, becoming just the second spacecraft ever to enter interstellar space in November 2018. Now, a day before the anniversary of that celestial exit, scientists have revealed what Voyager 2 saw as it crossed the threshold—and it's giving humans new insight into some of the big mysteries of our solar system.
The findings, spread across five studies published today in Nature Astronomy, mark the first time that a spacecraft has directly sampled the electrically charged hazes, or plasmas, that fill both interstellar space and the solar system's farthest outskirts. It's another first for the spacecraft, which was launched in 1977 and performed the first—and only—flybys of the ice giant planets Uranus and Neptune. (Find out more about the Voyager probes' "grand tour"—and why it almost didn't happen.)
SEE PICTURES FROM VOYAGER 2'S SOLAR SYSTEM TOUR
1/4
VIEW SLIDESHOW
Launched in August and September 1977, NASA's twin Voyager spacecraft have opened up new worlds for exploration, including Jupiter (shown here), Saturn, Uranus, and Neptune.
PHOTOGRAPH BY NASA/JPL
On August 17, 1981, the Voyager 2 spacecraft flew within 5.5 million miles of Saturn's rings, capturing a spectacular false-color view in visible light and ultraviolet.
PHOTOGRAPH BY NASA/JPL
On January 24, 1986, Voyager 2 came within 50,600 miles of the ice giant Uranus, sending back stunning images of the blue orb as it flew by.
PHOTOGRAPH BY NASA/JPL
Voyager 2 completed its final planetary flyby on August 25, 1989, as it zoomed by Neptune—capturing this haunting glimpse at the planet's deep blue atmosphere.
PHOTOGRAPH BY NASA/JPL
Voyager 2's charge into interstellar space follows that of sibling Voyager 1, which accomplished the same feat in 2012. The two spacecrafts' data have many features in common, such as the overall density of the particles they've encountered in interstellar space. But intriguingly, the twin craft also saw some key differences on their way out—raising new questions about our sun's movement through the galaxy.
"This has really been a wonderful journey," Voyager project scientist Ed Stone, a physicist at Caltech, said in a press briefing last week.
"It's just really exciting that humankind is interstellar," adds physicist Jamie Rankin, a postdoctoral researcher at Princeton University who wasn't involved with the studies. "We have been interstellar travelers since Voyager 1 crossed, but now, Voyager 2's cross is even more exciting, because we can now compare two very different locations ... in the interstellar medium."