>
                    
                    
                    
                    
                    
This roof paint blocks 97% of sunlight and pulls water from the air
'Venomous' Republican split over Israel hits new low as fiery feud reaches White House
Disease-ridden monkey that escaped from research facility shot dead by vigilante mom protecting...
Hooters returns - founders say survival hinges on uniform change after buying chain...
The 6 Best LLM Tools To Run Models Locally
 Testing My First Sodium-Ion Solar Battery 
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
 Russia flies strategic cruise missile propelled by a nuclear engine 
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install 
Engineers Discovered the Spectacular Secret to Making 17x Stronger Cement

This indicates we could finally be close to a tipping point where nanotubes become a serious competitor to silicon in almost all areas of microelectronics.
Wireless device technology operating in the millimeter-wave regime (30 to 300 GHz) increasingly needs to offer both high performance and a high level of integration with complementary metal–oxide–semiconductor (CMOS) technology. Aligned carbon nanotubes are proposed as an alternative to III–V technologies in such applications because of their highly linear signal amplification and compatibility with CMOS. Carbonics report the wafer-scalable fabrication of aligned carbon nanotube field-effect transistors operating at gigahertz frequencies. The devices have gate lengths of 110 nm and are capable, in distinct devices, of an extrinsic cutoff frequency and maximum frequency of oscillation of over 100 GHz, which surpasses the 90 GHz cutoff frequency of radio-frequency CMOS devices with gate lengths of 100 nm and is close to the performance of GaAs technology. Carbonic devices offer good linearity, with distinct devices capable of a peak output third-order intercept point of 26.5 dB when normalized to the 1 dB compression power, and 10.4 dB when normalized to d.c. power.