>
No Escape From Washington's Fiscal Doomsday Machine
New Questions about Pilot's Mental Health After Air India Crash Looks to Be INTENTIONAL
Ross Ulbricht 2.0: Roman Storm Faces 40 Years for Writing Code to Protect Your Privacy
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
This indicates we could finally be close to a tipping point where nanotubes become a serious competitor to silicon in almost all areas of microelectronics.
Wireless device technology operating in the millimeter-wave regime (30 to 300 GHz) increasingly needs to offer both high performance and a high level of integration with complementary metal–oxide–semiconductor (CMOS) technology. Aligned carbon nanotubes are proposed as an alternative to III–V technologies in such applications because of their highly linear signal amplification and compatibility with CMOS. Carbonics report the wafer-scalable fabrication of aligned carbon nanotube field-effect transistors operating at gigahertz frequencies. The devices have gate lengths of 110 nm and are capable, in distinct devices, of an extrinsic cutoff frequency and maximum frequency of oscillation of over 100 GHz, which surpasses the 90 GHz cutoff frequency of radio-frequency CMOS devices with gate lengths of 100 nm and is close to the performance of GaAs technology. Carbonic devices offer good linearity, with distinct devices capable of a peak output third-order intercept point of 26.5 dB when normalized to the 1 dB compression power, and 10.4 dB when normalized to d.c. power.