>
Tulsi Gabbard Exposes Alarming Biden-Era 'Domestic Terrorism' Strategy
"Levitating Diamonds Reach Impossible Speed":
Talons From The Sky: Coiled Scales On The Ground
If You Could Destroy America: How Would You Do It?
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
The system is made up of a perovskite solar cell, hooked up to electrodes made of a catalyst that electrolyzes the water. When sunlight hits the solar cell, it produces electricity that powers the catalyst, which then splits the water into oxygen and hydrogen. These bubble up to the surface where they can be collected for use.
The sunlight-to-hydrogen efficiency sits at around 6.7 percent, which is relatively high for these types of systems. But the most useful feature, the team says, is just how self-contained the new design is. The solar cell and the electrodes are all in one unit – the solar cell components are encased inside a polymer shell that protects them from water damage while still letting sunlight through. The electrodes sit on the outside where they can split the water.