>
Melee in Idaho after guy yells "F Charlie Kirk" at video
BREAKING: TMZ has released video showing the Charlie Kirk assassination suspect...
Why Some People Live to 100 (And Others Don't)
Reacting to Charlie Kirk Being Assassinated
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Towards this goal, Swedish researchers have created a new type of dye-sensitized solar cell that could charge our electronics by harvesting light from indoor lamps.
The research—published in Chemical Science—promises to revolutionize indoor digital sensing for smart greenhouses, offices, shelves, packages, and many other 'smart' everyday objects that connect to the internet.
According to a statement from Uppsala University, it is estimated that by 2025, many facets of our lives will be mediated through 75 billion devices that connect to the internet—a majority of which will be located indoors.
Broad installation of internet-enabled devices requires them to become autonomous, meaning that they should no longer need batteries or a grid connection to operate. To achieve this, it is crucial to identify a local low-maintenance energy source that can provide power them, especially in ambient conditions.
An Uppsala research team led by Marina Freitag, assistant professor at the Department of Chemistry, has developed new indoor photovoltaic cells that can convert up to 34 per cent of visible light into electricity to power a wide range of Internet of Things (IoT) sensors.