>
Battleborn Batteries Responds! Their Overheating Device is a "Feature" not a "Problem
Actor Liam Neeson Outs Himself as MAHA After Narrating Pro-RFK Jr. Documentary Slamming...
Kyle Rittenhouse announced on social media Wednesday that he has tied the knot.
JUST IN: President Trump Grants Tina Peters Pardon
Build a Greenhouse HEATER that Lasts 10-15 DAYS!
Look at the genius idea he came up with using this tank that nobody wanted
Latest Comet 3I Atlas Anomolies Like the Impossible 600,000 Mile Long Sunward Tail
Tesla Just Opened Its Biggest Supercharger Station Ever--And It's Powered By Solar And Batteries
Your body already knows how to regrow limbs. We just haven't figured out how to turn it on yet.
We've wiretapped the gut-brain hotline to decode signals driving disease
3D-printable concrete alternative hardens in three days, not four weeks
Could satellite-beaming planes and airships make SpaceX's Starlink obsolete?

Yet we know very little about how the complex reaction occurs, limiting our ability to use the double benefit to our advantage.
By studying the enzyme the bacteria use to catalyze the reaction, a team at Northwestern University now has discovered key structures that may drive the process.
Their findings ultimately could lead to the development of human-made biological catalysts that convert methane gas into methanol.
"Methane has a very strong bond, so it's pretty remarkable there's an enzyme that can do this," said Northwestern's Amy Rosenzweig, senior author of the paper. "If we don't understand exactly how the enzyme performs this difficult chemistry, we're not going to be able to engineer and optimize it for biotechnological applications."
The enzyme, called particulate methane monooxygenase (pMMO), is a particularly difficult protein to study because it's embedded in the cell membrane of the bacteria.