>
UK's The Times discusses whether pensions should invest in Bitcoin
Large Banks with Large Exposures to Uninsured Deposits (Q3 2024 Version)
WATCH: Feds suspend unconstitutional search program after getting caught on video
Dumbest Venn Diagram of All Time?
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
They looked at how much power a single lunar Starship (100 tonnes) could establish at the best so-called Peak of Eternal Light (PEL) at the lunar south pole.
The concept of operations would be for Starship to deliver a teleoperated wagon that would have telescoping poles and rolls of thin film solar drapes hanging from a suspension line between the telescoping pole. The wagon would move along the PEL ridge using an auger to drill vertical holes every so often and then tilting up and dropping a telescoping pole into that hole. As the wagon moved along, each drape would automatically be pulled out by the suspension line. After all poles were in place, motors would simultaneously cause the pole to telescope, raising the suspension line between them, and hence causing an entire wall of solar drapes to rise up.
The most significant part of the poster is the last section indicating how much could be done with the resulting 5.1 MW of power.
Namely:
– 37.5 tonnes/day – Propellant production (water electrolysis) or
– 28.8 tonnes/day – Iron production or
– 7.9 tonnes/day – Aluminum production or
– 230 residents fed per day.
The proposed system is built from 30 spans (33 telescoping supports) and weighs in at 48.8 tonnes and produces 7.38 MW. There is a 30 tonnes payload budget for the deployment hardware and cabling from the array to the settlement, plus 20 tonnes of payload margin. They are using additional margins elsewhere in the estimates, but these numbers overall are very achievable. The power-system performance is about 150 W/kg and an all-in mission performance of 92 W/kg with comfortable margins. The highest one could reasonably estimate here is 12 MW, which assumes 80 t is reserved for power hardware and 20t for everything else.