>
Whistleblower EXPOSES How Israel Brainwashes American Christians!
Joe Rogan listens to "How to destroy America"
The Avalanche of Lies About Who KiIIed Charlie Kirk and Why Growing Even Bigger
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
They looked at how much power a single lunar Starship (100 tonnes) could establish at the best so-called Peak of Eternal Light (PEL) at the lunar south pole.
The concept of operations would be for Starship to deliver a teleoperated wagon that would have telescoping poles and rolls of thin film solar drapes hanging from a suspension line between the telescoping pole. The wagon would move along the PEL ridge using an auger to drill vertical holes every so often and then tilting up and dropping a telescoping pole into that hole. As the wagon moved along, each drape would automatically be pulled out by the suspension line. After all poles were in place, motors would simultaneously cause the pole to telescope, raising the suspension line between them, and hence causing an entire wall of solar drapes to rise up.
The most significant part of the poster is the last section indicating how much could be done with the resulting 5.1 MW of power.
Namely:
– 37.5 tonnes/day – Propellant production (water electrolysis) or
– 28.8 tonnes/day – Iron production or
– 7.9 tonnes/day – Aluminum production or
– 230 residents fed per day.
The proposed system is built from 30 spans (33 telescoping supports) and weighs in at 48.8 tonnes and produces 7.38 MW. There is a 30 tonnes payload budget for the deployment hardware and cabling from the array to the settlement, plus 20 tonnes of payload margin. They are using additional margins elsewhere in the estimates, but these numbers overall are very achievable. The power-system performance is about 150 W/kg and an all-in mission performance of 92 W/kg with comfortable margins. The highest one could reasonably estimate here is 12 MW, which assumes 80 t is reserved for power hardware and 20t for everything else.