>
No One Does It Like Johnny Carson | Mark Malkoff #470 | The Way I Heard It
Webb is ready - the open source tool that will decode the Epstein files for EVERYONE
Trump administration ending Minneapolis immigration Operation Metro Surge
TUMBLER RIDGE MASSACRE: The Trans Shooter Media TRIED TO HIDE...
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

The companies claim their electric motors are 75 percent smaller than equivalent-output motors for automotive applications thanks to engineering improvements in heat management.
Much of the bulk of high-torque electric motors, such as those typically used in automotive applications for electrified vehicles, is in the heat management systems engineered into the motor casings, and efforts to reduce this bulk typically result in loss of torque output in heavier usage. DHX claims its design reduces bulk by up to 75 percent without losing thermal management efficiency, thus retaining the motor's expected output in heavy usage.
A smaller, lighter motor reduces weight and volume requirements, which improves the efficiency of the vehicle, resulting in greater range.
In an electric motor, the windings generate most of the heat produced during use. Air or liquid cooling is usually used to dissipate this heat into the motor's frame and case through the stator, which, unlike the windings, is fixed to those elements. In the DHX design, a heat exchanger in the winding pulls heat away and to the casing more efficiently.