>
Harvard University is being paid off to publish fake health studies by Big Food
38% of US debt is up for refinancing in the next 18 months
America's Second-Richest Elected Official Is Acting Like He Wants to Be President
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
The companies claim their electric motors are 75 percent smaller than equivalent-output motors for automotive applications thanks to engineering improvements in heat management.
Much of the bulk of high-torque electric motors, such as those typically used in automotive applications for electrified vehicles, is in the heat management systems engineered into the motor casings, and efforts to reduce this bulk typically result in loss of torque output in heavier usage. DHX claims its design reduces bulk by up to 75 percent without losing thermal management efficiency, thus retaining the motor's expected output in heavy usage.
A smaller, lighter motor reduces weight and volume requirements, which improves the efficiency of the vehicle, resulting in greater range.
In an electric motor, the windings generate most of the heat produced during use. Air or liquid cooling is usually used to dissipate this heat into the motor's frame and case through the stator, which, unlike the windings, is fixed to those elements. In the DHX design, a heat exchanger in the winding pulls heat away and to the casing more efficiently.