>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
The Pentagon is attempting what was, until recently, an impossible technological feat—developing a high-bandwidth neural interface that would allow people to beam data from their minds to external devices and back.
That's right—a brain modem. One that could allow a soldier to, for example, control a drone with his mind.
This seemingly unlikely piece of technology has just gotten a lot less unlikely. On Feb. 8, the Defense Advanced Research Projects Agency (DARPA)—the U.S. military's fringe-science wing—announced the first successful tests, on animal subjects, of a tiny sensor that travels through blood vessels, lodges in the brain and records neural activity.
The so-called "stentrode," a combination stent and electrode, is the size of a paperclip and flexible. The tiny, injectable machine—the invention of neurologist Tom Oxley and his team at the University of Melbourne in Australia—could help researchers solve one of the most vexing problems with the brain modem: how to insert a transmitter into the brain without also drilling a hole in the user's head, a risky procedure under any circumstances.