>
If ever there was a time to remind us of about what "the 4th" holiday really is about, thi
Trump's big beautiful independence day address!
This holiday made possible by people with GUNS
"We've Become Serfs On Our Own Land": The USDA Trap, Foreign Land Sales, And The Colla
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Last year we saw researchers adapt these lightweight materials to stop various forms of radiation in their tracks, and now the same team has ramped things up to offer protection from something with a bit more force: an armour-piercing bullet, which was turned to dust on impact.
In its most simple form, foam metal is made by bubbling gas through molten metal to form a frothy mixture which then sets as a lightweight matrix. This leaves a material that offers a lighter alternative to conventional metals, while still maintaining a comparable strength.
Afsaneh Rabiei, a professor of mechanical and aerospace engineering at North Carolina State University, last year produced a foam metal shield that could block X-rays, various forms of gamma rays and neutron radiation, giving it potential as a lightweight alternative to the bulky radiation shielding currently available.