>
Harvard University is being paid off to publish fake health studies by Big Food
38% of US debt is up for refinancing in the next 18 months
America's Second-Richest Elected Official Is Acting Like He Wants to Be President
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
As part of the on-going pursuit of this goal, researchers from Forschungszentrum Jülich claim to have created a working, compact, self-contained artificial photosynthesis system that could form the basis for practical commercial devices.
Photosynthesis in plants and certain types of algae is the process where light energy is transformed into chemical energy to synthesize simple carbohydrates from carbon dioxide and water. In artificial photosynthesis, or photoelectrochemical water splitting, solar energy is used to split hydrogen molecules from water (or even further refine it into methane in some systems).
In this latest system, as in most other artificial photosynthesis devices, the amalgamation of a solar cell and an electrolyzer is used to capture solar energy to split water into hydrogen. A technique employed since the 1970s, most research has concentrated on increasing efficiency by developing new absorber materials and catalysts.