>
"TEST Her First!" - Do This BEFORE You Get Married | Charlie Kirk
AI, Inevitability, & Human Sovereignty
Researchers Found Unvaccinated Children Healthier Than Vaccinated, Didn't Publish Findings
The Five Most Likely Outcomes From The Russian Drone Incursion Into Poland
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
As part of the on-going pursuit of this goal, researchers from Forschungszentrum Jülich claim to have created a working, compact, self-contained artificial photosynthesis system that could form the basis for practical commercial devices.
Photosynthesis in plants and certain types of algae is the process where light energy is transformed into chemical energy to synthesize simple carbohydrates from carbon dioxide and water. In artificial photosynthesis, or photoelectrochemical water splitting, solar energy is used to split hydrogen molecules from water (or even further refine it into methane in some systems).
In this latest system, as in most other artificial photosynthesis devices, the amalgamation of a solar cell and an electrolyzer is used to capture solar energy to split water into hydrogen. A technique employed since the 1970s, most research has concentrated on increasing efficiency by developing new absorber materials and catalysts.