>
Canada's MAID CULTURE OF DEATH Just Hit Rock Bottom: KILLING PRISONERS NOW!!!
Weight gain single-handedly prevented by a gut microbe
Doug Casey on 2025's Defining Events and What Comes Next
BREAKING: Officer Tatum & Other Investigators Believe A Potential Suspect In The Brown...
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

A Northwestern University team has shown a new technique using liquid inks and common furnaces rather than more expensive lasers or electron beams.
In addition to being cheaper, the researchers say the process is also faster, more uniform and works with a wide variety of metals, alloys and compounds.
"Our method greatly expands the architectures and metals we're able to print, which really opens the door for a lot of different applications," said assistant professor of materials science and engineering Ramille Shah, who led the study.
Shah created a liquid ink from metal powders, solvents and an elastomer binder that could be printed through a nozzle in much the same way that plastic-based consumer 3D printers function. The printed structures are then sintered, a process in which they are heated in a simple furnace to allow the powders to merge together without melting.