>
Putin Confirms End Of Easter Truce, Large-Scale Fighting Resumes
Faith Foes: Pope Francis's Fight With The Catholic Right
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Every day, unique and eco-friendly innovations are unveiled. However, a textile designed by engineers with the Georgia Institute of Technology, Chongqing University, and the Chinese Academy of Sciences is likely one you missed hearing about. The fabric is newsworthy because it is capable of producing electricity from sunlight and fiction – including the wind. It could be a total game-changer, yet no one has really heard about it.
According to MotherBoard, the material is both breathable and robust and allows for enough motion to make it a good candidate for wearable electronics. In fact, an image below demonstrates a few of its uses, including powering wearable electronics and directly charging a cellphone.
Credit: Wang et al
The textile consists of solid photovoltaic elements woven together with copper electrodes. The material acts as triboelectric nanogenerator, meaning it is capable of converting certain frictional forces into electric charge, "a la static electricity."
Zhong Lin Wang from Georgia Tech explains:
"Here, we present a foldable and sustainable power source by fabricating an all-solid hybrid power textile with economically viable materials and scalable fabrication technologies. Based on lightweight and low-cost polymer fibres, the reported hybrid power textile introduces a new module fabrication strategy by weaving it in a staggered way on an industrial weaving machine via a shuttle-flying process."