>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Case in point is the work of physicists and chemists at the University of Bristol, who have found a way to convert thousands of tonnes of seemingly worthless nuclear waste into man-made diamond batteries that can generate a small electric current for longer than the entire history of human civilization.
How to dispose of nuclear waste is one of the great technical challenges of the 21st century. The trouble is, it usually turns out not to be so much a question of disposal as long-term storage. If it was simply a matter of getting rid of radioactive material permanently, there are any number of options, but spent nuclear fuel and other waste consists of valuable radioactive isotopes that are needed in industry and medicine, or can be reprocessed to produce more fuel. Disposal, therefore is more often a matter of keeping waste safe, but being able to get at it later when needed.