>
War on Words: Both Parties Try to Silence Speech They Don't Like
Low Interest Rates Don't Have the Stimulus the Economy Craves
"What's About To Happen Is Not A Coincidence" | Whitney Webb
Future of Satellite of Direct to Cellphone
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Now one such state, first proposed almost 50 years ago, has been created in experiments for the first time. Say hello to the supersolid, a state where atoms simultaneously exhibit a crystalline structure but still flow like a frictionless fluid.
The concept of a supersolid arose from the Nobel Prize-winning discovery in the 1970s of a superfluid, a liquid that has zero viscosity, meaning it flows with no resistance or "thickness." At the time, British physicist David Thouless theorized that a state of matter could exist where atoms are both free flowing like a superfluid, but also arranged in a crystalline structure, making it a supersolid.
Earlier attempts to produce this state used helium, the element that first exhibited superfluidity, but it was never brought to fruition. Now, two simultaneous – but independent – studies, one from ETH Zurich and one from MIT, have produced supersolids from Bose-Einstein condensates, using two different techniques.